00001 00002 /** 00003 * \addtogroup uip 00004 * @{ 00005 */ 00006 00007 /** 00008 * \file 00009 * Header file for the uIP TCP/IP stack. 00010 * \author Adam Dunkels <adam@dunkels.com> 00011 * \author Julien Abeille <jabeille@cisco.com> (IPv6 related code) 00012 * \author Mathilde Durvy <mdurvy@cisco.com> (IPv6 related code) 00013 * 00014 * The uIP TCP/IP stack header file contains definitions for a number 00015 * of C macros that are used by uIP programs as well as internal uIP 00016 * structures, TCP/IP header structures and function declarations. 00017 * 00018 */ 00019 00020 /* 00021 * Copyright (c) 2001-2003, Adam Dunkels. 00022 * All rights reserved. 00023 * 00024 * Redistribution and use in source and binary forms, with or without 00025 * modification, are permitted provided that the following conditions 00026 * are met: 00027 * 1. Redistributions of source code must retain the above copyright 00028 * notice, this list of conditions and the following disclaimer. 00029 * 2. Redistributions in binary form must reproduce the above copyright 00030 * notice, this list of conditions and the following disclaimer in the 00031 * documentation and/or other materials provided with the distribution. 00032 * 3. The name of the author may not be used to endorse or promote 00033 * products derived from this software without specific prior 00034 * written permission. 00035 * 00036 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 00037 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 00038 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00039 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 00040 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 00041 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00042 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 00043 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 00044 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00045 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00046 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00047 * 00048 * This file is part of the uIP TCP/IP stack. 00049 * 00050 * $Id: uip.h,v 1.35 2010/10/19 18:29:04 adamdunkels Exp $ 00051 * 00052 */ 00053 00054 #ifndef __UIP_H__ 00055 #define __UIP_H__ 00056 00057 #include "net/uipopt.h" 00058 00059 /** 00060 * Representation of an IP address. 00061 * 00062 */ 00063 #if UIP_CONF_IPV6 00064 typedef union uip_ip6addr_t { 00065 u8_t u8[16]; /* Initializer, must come first!!! */ 00066 u16_t u16[8]; 00067 } uip_ip6addr_t; 00068 00069 typedef uip_ip6addr_t uip_ipaddr_t; 00070 #else /* UIP_CONF_IPV6 */ 00071 typedef union uip_ip4addr_t { 00072 u8_t u8[4]; /* Initializer, must come first!!! */ 00073 u16_t u16[2]; 00074 #if 0 00075 u32_t u32; 00076 #endif 00077 } uip_ip4addr_t; 00078 typedef uip_ip4addr_t uip_ipaddr_t; 00079 #endif /* UIP_CONF_IPV6 */ 00080 00081 00082 /*---------------------------------------------------------------------------*/ 00083 00084 /** \brief 16 bit 802.15.4 address */ 00085 typedef struct uip_802154_shortaddr { 00086 u8_t addr[2]; 00087 } uip_802154_shortaddr; 00088 /** \brief 64 bit 802.15.4 address */ 00089 typedef struct uip_802154_longaddr { 00090 u8_t addr[8]; 00091 } uip_802154_longaddr; 00092 00093 /** \brief 802.11 address */ 00094 typedef struct uip_80211_addr { 00095 u8_t addr[6]; 00096 } uip_80211_addr; 00097 00098 /** \brief 802.3 address */ 00099 typedef struct uip_eth_addr { 00100 u8_t addr[6]; 00101 } uip_eth_addr; 00102 00103 00104 #if UIP_CONF_LL_802154 00105 /** \brief 802.15.4 address */ 00106 typedef uip_802154_longaddr uip_lladdr_t; 00107 #define UIP_802154_SHORTADDR_LEN 2 00108 #define UIP_802154_LONGADDR_LEN 8 00109 #define UIP_LLADDR_LEN UIP_802154_LONGADDR_LEN 00110 #else /*UIP_CONF_LL_802154*/ 00111 #if UIP_CONF_LL_80211 00112 /** \brief 802.11 address */ 00113 typedef uip_80211_addr uip_lladdr_t; 00114 #define UIP_LLADDR_LEN 6 00115 #else /*UIP_CONF_LL_80211*/ 00116 /** \brief Ethernet address */ 00117 typedef uip_eth_addr uip_lladdr_t; 00118 #define UIP_LLADDR_LEN 6 00119 #endif /*UIP_CONF_LL_80211*/ 00120 #endif /*UIP_CONF_LL_802154*/ 00121 00122 #include "net/tcpip.h" 00123 00124 /*---------------------------------------------------------------------------*/ 00125 /* First, the functions that should be called from the 00126 * system. Initialization, the periodic timer, and incoming packets are 00127 * handled by the following three functions. 00128 */ 00129 /** 00130 * \defgroup uipconffunc uIP configuration functions 00131 * @{ 00132 * 00133 * The uIP configuration functions are used for setting run-time 00134 * parameters in uIP such as IP addresses. 00135 */ 00136 00137 /** 00138 * Set the IP address of this host. 00139 * 00140 * The IP address is represented as a 4-byte array where the first 00141 * octet of the IP address is put in the first member of the 4-byte 00142 * array. 00143 * 00144 * Example: 00145 \code 00146 00147 uip_ipaddr_t addr; 00148 00149 uip_ipaddr(&addr, 192,168,1,2); 00150 uip_sethostaddr(&addr); 00151 00152 \endcode 00153 * \param addr A pointer to an IP address of type uip_ipaddr_t; 00154 * 00155 * \sa uip_ipaddr() 00156 * 00157 * \hideinitializer 00158 */ 00159 #define uip_sethostaddr(addr) uip_ipaddr_copy(&uip_hostaddr, (addr)) 00160 00161 /** 00162 * Get the IP address of this host. 00163 * 00164 * The IP address is represented as a 4-byte array where the first 00165 * octet of the IP address is put in the first member of the 4-byte 00166 * array. 00167 * 00168 * Example: 00169 \code 00170 uip_ipaddr_t hostaddr; 00171 00172 uip_gethostaddr(&hostaddr); 00173 \endcode 00174 * \param addr A pointer to a uip_ipaddr_t variable that will be 00175 * filled in with the currently configured IP address. 00176 * 00177 * \hideinitializer 00178 */ 00179 #define uip_gethostaddr(addr) uip_ipaddr_copy((addr), &uip_hostaddr) 00180 00181 /** 00182 * Set the default router's IP address. 00183 * 00184 * \param addr A pointer to a uip_ipaddr_t variable containing the IP 00185 * address of the default router. 00186 * 00187 * \sa uip_ipaddr() 00188 * 00189 * \hideinitializer 00190 */ 00191 #define uip_setdraddr(addr) uip_ipaddr_copy(&uip_draddr, (addr)) 00192 00193 /** 00194 * Set the netmask. 00195 * 00196 * \param addr A pointer to a uip_ipaddr_t variable containing the IP 00197 * address of the netmask. 00198 * 00199 * \sa uip_ipaddr() 00200 * 00201 * \hideinitializer 00202 */ 00203 #define uip_setnetmask(addr) uip_ipaddr_copy(&uip_netmask, (addr)) 00204 00205 00206 /** 00207 * Get the default router's IP address. 00208 * 00209 * \param addr A pointer to a uip_ipaddr_t variable that will be 00210 * filled in with the IP address of the default router. 00211 * 00212 * \hideinitializer 00213 */ 00214 #define uip_getdraddr(addr) uip_ipaddr_copy((addr), &uip_draddr) 00215 00216 /** 00217 * Get the netmask. 00218 * 00219 * \param addr A pointer to a uip_ipaddr_t variable that will be 00220 * filled in with the value of the netmask. 00221 * 00222 * \hideinitializer 00223 */ 00224 #define uip_getnetmask(addr) uip_ipaddr_copy((addr), &uip_netmask) 00225 00226 /** @} */ 00227 00228 /** 00229 * \defgroup uipinit uIP initialization functions 00230 * @{ 00231 * 00232 * The uIP initialization functions are used for booting uIP. 00233 */ 00234 00235 /** 00236 * uIP initialization function. 00237 * 00238 * This function should be called at boot up to initilize the uIP 00239 * TCP/IP stack. 00240 */ 00241 void uip_init(void); 00242 00243 /** 00244 * uIP initialization function. 00245 * 00246 * This function may be used at boot time to set the initial ip_id. 00247 */ 00248 void uip_setipid(u16_t id); 00249 00250 /** @} */ 00251 00252 /** 00253 * \defgroup uipdevfunc uIP device driver functions 00254 * @{ 00255 * 00256 * These functions are used by a network device driver for interacting 00257 * with uIP. 00258 */ 00259 00260 /** 00261 * Process an incoming packet. 00262 * 00263 * This function should be called when the device driver has received 00264 * a packet from the network. The packet from the device driver must 00265 * be present in the uip_buf buffer, and the length of the packet 00266 * should be placed in the uip_len variable. 00267 * 00268 * When the function returns, there may be an outbound packet placed 00269 * in the uip_buf packet buffer. If so, the uip_len variable is set to 00270 * the length of the packet. If no packet is to be sent out, the 00271 * uip_len variable is set to 0. 00272 * 00273 * The usual way of calling the function is presented by the source 00274 * code below. 00275 \code 00276 uip_len = devicedriver_poll(); 00277 if(uip_len > 0) { 00278 uip_input(); 00279 if(uip_len > 0) { 00280 devicedriver_send(); 00281 } 00282 } 00283 \endcode 00284 * 00285 * \note If you are writing a uIP device driver that needs ARP 00286 * (Address Resolution Protocol), e.g., when running uIP over 00287 * Ethernet, you will need to call the uIP ARP code before calling 00288 * this function: 00289 \code 00290 #define BUF ((struct uip_eth_hdr *)&uip_buf[0]) 00291 uip_len = ethernet_devicedrver_poll(); 00292 if(uip_len > 0) { 00293 if(BUF->type == UIP_HTONS(UIP_ETHTYPE_IP)) { 00294 uip_arp_ipin(); 00295 uip_input(); 00296 if(uip_len > 0) { 00297 uip_arp_out(); 00298 ethernet_devicedriver_send(); 00299 } 00300 } else if(BUF->type == UIP_HTONS(UIP_ETHTYPE_ARP)) { 00301 uip_arp_arpin(); 00302 if(uip_len > 0) { 00303 ethernet_devicedriver_send(); 00304 } 00305 } 00306 \endcode 00307 * 00308 * \hideinitializer 00309 */ 00310 #define uip_input() uip_process(UIP_DATA) 00311 00312 00313 /** 00314 * Periodic processing for a connection identified by its number. 00315 * 00316 * This function does the necessary periodic processing (timers, 00317 * polling) for a uIP TCP conneciton, and should be called when the 00318 * periodic uIP timer goes off. It should be called for every 00319 * connection, regardless of whether they are open of closed. 00320 * 00321 * When the function returns, it may have an outbound packet waiting 00322 * for service in the uIP packet buffer, and if so the uip_len 00323 * variable is set to a value larger than zero. The device driver 00324 * should be called to send out the packet. 00325 * 00326 * The usual way of calling the function is through a for() loop like 00327 * this: 00328 \code 00329 for(i = 0; i < UIP_CONNS; ++i) { 00330 uip_periodic(i); 00331 if(uip_len > 0) { 00332 devicedriver_send(); 00333 } 00334 } 00335 \endcode 00336 * 00337 * \note If you are writing a uIP device driver that needs ARP 00338 * (Address Resolution Protocol), e.g., when running uIP over 00339 * Ethernet, you will need to call the uip_arp_out() function before 00340 * calling the device driver: 00341 \code 00342 for(i = 0; i < UIP_CONNS; ++i) { 00343 uip_periodic(i); 00344 if(uip_len > 0) { 00345 uip_arp_out(); 00346 ethernet_devicedriver_send(); 00347 } 00348 } 00349 \endcode 00350 * 00351 * \param conn The number of the connection which is to be periodically polled. 00352 * 00353 * \hideinitializer 00354 */ 00355 #if UIP_TCP 00356 #define uip_periodic(conn) do { uip_conn = &uip_conns[conn]; \ 00357 uip_process(UIP_TIMER); } while (0) 00358 00359 /** 00360 * 00361 * 00362 */ 00363 #define uip_conn_active(conn) (uip_conns[conn].tcpstateflags != UIP_CLOSED) 00364 00365 /** 00366 * Perform periodic processing for a connection identified by a pointer 00367 * to its structure. 00368 * 00369 * Same as uip_periodic() but takes a pointer to the actual uip_conn 00370 * struct instead of an integer as its argument. This function can be 00371 * used to force periodic processing of a specific connection. 00372 * 00373 * \param conn A pointer to the uip_conn struct for the connection to 00374 * be processed. 00375 * 00376 * \hideinitializer 00377 */ 00378 #define uip_periodic_conn(conn) do { uip_conn = conn; \ 00379 uip_process(UIP_TIMER); } while (0) 00380 00381 /** 00382 * Request that a particular connection should be polled. 00383 * 00384 * Similar to uip_periodic_conn() but does not perform any timer 00385 * processing. The application is polled for new data. 00386 * 00387 * \param conn A pointer to the uip_conn struct for the connection to 00388 * be processed. 00389 * 00390 * \hideinitializer 00391 */ 00392 #define uip_poll_conn(conn) do { uip_conn = conn; \ 00393 uip_process(UIP_POLL_REQUEST); } while (0) 00394 00395 #endif /* UIP_TCP */ 00396 00397 #if UIP_UDP 00398 /** 00399 * Periodic processing for a UDP connection identified by its number. 00400 * 00401 * This function is essentially the same as uip_periodic(), but for 00402 * UDP connections. It is called in a similar fashion as the 00403 * uip_periodic() function: 00404 \code 00405 for(i = 0; i < UIP_UDP_CONNS; i++) { 00406 uip_udp_periodic(i); 00407 if(uip_len > 0) { 00408 devicedriver_send(); 00409 } 00410 } 00411 \endcode 00412 * 00413 * \note As for the uip_periodic() function, special care has to be 00414 * taken when using uIP together with ARP and Ethernet: 00415 \code 00416 for(i = 0; i < UIP_UDP_CONNS; i++) { 00417 uip_udp_periodic(i); 00418 if(uip_len > 0) { 00419 uip_arp_out(); 00420 ethernet_devicedriver_send(); 00421 } 00422 } 00423 \endcode 00424 * 00425 * \param conn The number of the UDP connection to be processed. 00426 * 00427 * \hideinitializer 00428 */ 00429 #define uip_udp_periodic(conn) do { uip_udp_conn = &uip_udp_conns[conn]; \ 00430 uip_process(UIP_UDP_TIMER); } while(0) 00431 00432 /** 00433 * Periodic processing for a UDP connection identified by a pointer to 00434 * its structure. 00435 * 00436 * Same as uip_udp_periodic() but takes a pointer to the actual 00437 * uip_conn struct instead of an integer as its argument. This 00438 * function can be used to force periodic processing of a specific 00439 * connection. 00440 * 00441 * \param conn A pointer to the uip_udp_conn struct for the connection 00442 * to be processed. 00443 * 00444 * \hideinitializer 00445 */ 00446 #define uip_udp_periodic_conn(conn) do { uip_udp_conn = conn; \ 00447 uip_process(UIP_UDP_TIMER); } while(0) 00448 #endif /* UIP_UDP */ 00449 00450 /** \brief Abandon the reassembly of the current packet */ 00451 void uip_reass_over(void); 00452 00453 /** 00454 * The uIP packet buffer. 00455 * 00456 * The uip_buf array is used to hold incoming and outgoing 00457 * packets. The device driver should place incoming data into this 00458 * buffer. When sending data, the device driver should read the link 00459 * level headers and the TCP/IP headers from this buffer. The size of 00460 * the link level headers is configured by the UIP_LLH_LEN define. 00461 * 00462 * \note The application data need not be placed in this buffer, so 00463 * the device driver must read it from the place pointed to by the 00464 * uip_appdata pointer as illustrated by the following example: 00465 \code 00466 void 00467 devicedriver_send(void) 00468 { 00469 hwsend(&uip_buf[0], UIP_LLH_LEN); 00470 if(uip_len <= UIP_LLH_LEN + UIP_TCPIP_HLEN) { 00471 hwsend(&uip_buf[UIP_LLH_LEN], uip_len - UIP_LLH_LEN); 00472 } else { 00473 hwsend(&uip_buf[UIP_LLH_LEN], UIP_TCPIP_HLEN); 00474 hwsend(uip_appdata, uip_len - UIP_TCPIP_HLEN - UIP_LLH_LEN); 00475 } 00476 } 00477 \endcode 00478 */ 00479 00480 typedef union { 00481 uint32_t u32[(UIP_BUFSIZE + 3) / 4]; 00482 uint8_t u8[UIP_BUFSIZE]; 00483 } uip_buf_t; 00484 00485 CCIF extern uip_buf_t uip_aligned_buf; 00486 #define uip_buf (uip_aligned_buf.u8) 00487 00488 00489 /** @} */ 00490 00491 /*---------------------------------------------------------------------------*/ 00492 /* Functions that are used by the uIP application program. Opening and 00493 * closing connections, sending and receiving data, etc. is all 00494 * handled by the functions below. 00495 */ 00496 /** 00497 * \defgroup uipappfunc uIP application functions 00498 * @{ 00499 * 00500 * Functions used by an application running of top of uIP. 00501 */ 00502 00503 /** 00504 * Start listening to the specified port. 00505 * 00506 * \note Since this function expects the port number in network byte 00507 * order, a conversion using UIP_HTONS() or uip_htons() is necessary. 00508 * 00509 \code 00510 uip_listen(UIP_HTONS(80)); 00511 \endcode 00512 * 00513 * \param port A 16-bit port number in network byte order. 00514 */ 00515 void uip_listen(u16_t port); 00516 00517 /** 00518 * Stop listening to the specified port. 00519 * 00520 * \note Since this function expects the port number in network byte 00521 * order, a conversion using UIP_HTONS() or uip_htons() is necessary. 00522 * 00523 \code 00524 uip_unlisten(UIP_HTONS(80)); 00525 \endcode 00526 * 00527 * \param port A 16-bit port number in network byte order. 00528 */ 00529 void uip_unlisten(u16_t port); 00530 00531 /** 00532 * Connect to a remote host using TCP. 00533 * 00534 * This function is used to start a new connection to the specified 00535 * port on the specified host. It allocates a new connection identifier, 00536 * sets the connection to the SYN_SENT state and sets the 00537 * retransmission timer to 0. This will cause a TCP SYN segment to be 00538 * sent out the next time this connection is periodically processed, 00539 * which usually is done within 0.5 seconds after the call to 00540 * uip_connect(). 00541 * 00542 * \note This function is available only if support for active open 00543 * has been configured by defining UIP_ACTIVE_OPEN to 1 in uipopt.h. 00544 * 00545 * \note Since this function requires the port number to be in network 00546 * byte order, a conversion using UIP_HTONS() or uip_htons() is necessary. 00547 * 00548 \code 00549 uip_ipaddr_t ipaddr; 00550 00551 uip_ipaddr(&ipaddr, 192,168,1,2); 00552 uip_connect(&ipaddr, UIP_HTONS(80)); 00553 \endcode 00554 * 00555 * \param ripaddr The IP address of the remote host. 00556 * 00557 * \param port A 16-bit port number in network byte order. 00558 * 00559 * \return A pointer to the uIP connection identifier for the new connection, 00560 * or NULL if no connection could be allocated. 00561 * 00562 */ 00563 struct uip_conn *uip_connect(uip_ipaddr_t *ripaddr, u16_t port); 00564 00565 00566 00567 /** 00568 * \internal 00569 * 00570 * Check if a connection has outstanding (i.e., unacknowledged) data. 00571 * 00572 * \param conn A pointer to the uip_conn structure for the connection. 00573 * 00574 * \hideinitializer 00575 */ 00576 #define uip_outstanding(conn) ((conn)->len) 00577 00578 /** 00579 * Send data on the current connection. 00580 * 00581 * This function is used to send out a single segment of TCP 00582 * data. Only applications that have been invoked by uIP for event 00583 * processing can send data. 00584 * 00585 * The amount of data that actually is sent out after a call to this 00586 * function is determined by the maximum amount of data TCP allows. uIP 00587 * will automatically crop the data so that only the appropriate 00588 * amount of data is sent. The function uip_mss() can be used to query 00589 * uIP for the amount of data that actually will be sent. 00590 * 00591 * \note This function does not guarantee that the sent data will 00592 * arrive at the destination. If the data is lost in the network, the 00593 * application will be invoked with the uip_rexmit() event being 00594 * set. The application will then have to resend the data using this 00595 * function. 00596 * 00597 * \param data A pointer to the data which is to be sent. 00598 * 00599 * \param len The maximum amount of data bytes to be sent. 00600 * 00601 * \hideinitializer 00602 */ 00603 CCIF void uip_send(const void *data, int len); 00604 00605 /** 00606 * The length of any incoming data that is currently available (if available) 00607 * in the uip_appdata buffer. 00608 * 00609 * The test function uip_data() must first be used to check if there 00610 * is any data available at all. 00611 * 00612 * \hideinitializer 00613 */ 00614 /*void uip_datalen(void);*/ 00615 #define uip_datalen() uip_len 00616 00617 /** 00618 * The length of any out-of-band data (urgent data) that has arrived 00619 * on the connection. 00620 * 00621 * \note The configuration parameter UIP_URGDATA must be set for this 00622 * function to be enabled. 00623 * 00624 * \hideinitializer 00625 */ 00626 #define uip_urgdatalen() uip_urglen 00627 00628 /** 00629 * Close the current connection. 00630 * 00631 * This function will close the current connection in a nice way. 00632 * 00633 * \hideinitializer 00634 */ 00635 #define uip_close() (uip_flags = UIP_CLOSE) 00636 00637 /** 00638 * Abort the current connection. 00639 * 00640 * This function will abort (reset) the current connection, and is 00641 * usually used when an error has occurred that prevents using the 00642 * uip_close() function. 00643 * 00644 * \hideinitializer 00645 */ 00646 #define uip_abort() (uip_flags = UIP_ABORT) 00647 00648 /** 00649 * Tell the sending host to stop sending data. 00650 * 00651 * This function will close our receiver's window so that we stop 00652 * receiving data for the current connection. 00653 * 00654 * \hideinitializer 00655 */ 00656 #define uip_stop() (uip_conn->tcpstateflags |= UIP_STOPPED) 00657 00658 /** 00659 * Find out if the current connection has been previously stopped with 00660 * uip_stop(). 00661 * 00662 * \hideinitializer 00663 */ 00664 #define uip_stopped(conn) ((conn)->tcpstateflags & UIP_STOPPED) 00665 00666 /** 00667 * Restart the current connection, if is has previously been stopped 00668 * with uip_stop(). 00669 * 00670 * This function will open the receiver's window again so that we 00671 * start receiving data for the current connection. 00672 * 00673 * \hideinitializer 00674 */ 00675 #define uip_restart() do { uip_flags |= UIP_NEWDATA; \ 00676 uip_conn->tcpstateflags &= ~UIP_STOPPED; \ 00677 } while(0) 00678 00679 00680 /* uIP tests that can be made to determine in what state the current 00681 connection is, and what the application function should do. */ 00682 00683 /** 00684 * Is the current connection a UDP connection? 00685 * 00686 * This function checks whether the current connection is a UDP connection. 00687 * 00688 * \hideinitializer 00689 * 00690 */ 00691 #define uip_udpconnection() (uip_conn == NULL) 00692 00693 /** 00694 * Is new incoming data available? 00695 * 00696 * Will reduce to non-zero if there is new data for the application 00697 * present at the uip_appdata pointer. The size of the data is 00698 * available through the uip_len variable. 00699 * 00700 * \hideinitializer 00701 */ 00702 #define uip_newdata() (uip_flags & UIP_NEWDATA) 00703 00704 /** 00705 * Has previously sent data been acknowledged? 00706 * 00707 * Will reduce to non-zero if the previously sent data has been 00708 * acknowledged by the remote host. This means that the application 00709 * can send new data. 00710 * 00711 * \hideinitializer 00712 */ 00713 #define uip_acked() (uip_flags & UIP_ACKDATA) 00714 00715 /** 00716 * Has the connection just been connected? 00717 * 00718 * Reduces to non-zero if the current connection has been connected to 00719 * a remote host. This will happen both if the connection has been 00720 * actively opened (with uip_connect()) or passively opened (with 00721 * uip_listen()). 00722 * 00723 * \hideinitializer 00724 */ 00725 #define uip_connected() (uip_flags & UIP_CONNECTED) 00726 00727 /** 00728 * Has the connection been closed by the other end? 00729 * 00730 * Is non-zero if the connection has been closed by the remote 00731 * host. The application may then do the necessary clean-ups. 00732 * 00733 * \hideinitializer 00734 */ 00735 #define uip_closed() (uip_flags & UIP_CLOSE) 00736 00737 /** 00738 * Has the connection been aborted by the other end? 00739 * 00740 * Non-zero if the current connection has been aborted (reset) by the 00741 * remote host. 00742 * 00743 * \hideinitializer 00744 */ 00745 #define uip_aborted() (uip_flags & UIP_ABORT) 00746 00747 /** 00748 * Has the connection timed out? 00749 * 00750 * Non-zero if the current connection has been aborted due to too many 00751 * retransmissions. 00752 * 00753 * \hideinitializer 00754 */ 00755 #define uip_timedout() (uip_flags & UIP_TIMEDOUT) 00756 00757 /** 00758 * Do we need to retransmit previously data? 00759 * 00760 * Reduces to non-zero if the previously sent data has been lost in 00761 * the network, and the application should retransmit it. The 00762 * application should send the exact same data as it did the last 00763 * time, using the uip_send() function. 00764 * 00765 * \hideinitializer 00766 */ 00767 #define uip_rexmit() (uip_flags & UIP_REXMIT) 00768 00769 /** 00770 * Is the connection being polled by uIP? 00771 * 00772 * Is non-zero if the reason the application is invoked is that the 00773 * current connection has been idle for a while and should be 00774 * polled. 00775 * 00776 * The polling event can be used for sending data without having to 00777 * wait for the remote host to send data. 00778 * 00779 * \hideinitializer 00780 */ 00781 #define uip_poll() (uip_flags & UIP_POLL) 00782 00783 /** 00784 * Get the initial maximum segment size (MSS) of the current 00785 * connection. 00786 * 00787 * \hideinitializer 00788 */ 00789 #define uip_initialmss() (uip_conn->initialmss) 00790 00791 /** 00792 * Get the current maximum segment size that can be sent on the current 00793 * connection. 00794 * 00795 * The current maximum segment size that can be sent on the 00796 * connection is computed from the receiver's window and the MSS of 00797 * the connection (which also is available by calling 00798 * uip_initialmss()). 00799 * 00800 * \hideinitializer 00801 */ 00802 #define uip_mss() (uip_conn->mss) 00803 00804 /** 00805 * Set up a new UDP connection. 00806 * 00807 * This function sets up a new UDP connection. The function will 00808 * automatically allocate an unused local port for the new 00809 * connection. However, another port can be chosen by using the 00810 * uip_udp_bind() call, after the uip_udp_new() function has been 00811 * called. 00812 * 00813 * Example: 00814 \code 00815 uip_ipaddr_t addr; 00816 struct uip_udp_conn *c; 00817 00818 uip_ipaddr(&addr, 192,168,2,1); 00819 c = uip_udp_new(&addr, UIP_HTONS(12345)); 00820 if(c != NULL) { 00821 uip_udp_bind(c, UIP_HTONS(12344)); 00822 } 00823 \endcode 00824 * \param ripaddr The IP address of the remote host. 00825 * 00826 * \param rport The remote port number in network byte order. 00827 * 00828 * \return The uip_udp_conn structure for the new connection or NULL 00829 * if no connection could be allocated. 00830 */ 00831 struct uip_udp_conn *uip_udp_new(const uip_ipaddr_t *ripaddr, u16_t rport); 00832 00833 /** 00834 * Removed a UDP connection. 00835 * 00836 * \param conn A pointer to the uip_udp_conn structure for the connection. 00837 * 00838 * \hideinitializer 00839 */ 00840 #define uip_udp_remove(conn) (conn)->lport = 0 00841 00842 /** 00843 * Bind a UDP connection to a local port. 00844 * 00845 * \param conn A pointer to the uip_udp_conn structure for the 00846 * connection. 00847 * 00848 * \param port The local port number, in network byte order. 00849 * 00850 * \hideinitializer 00851 */ 00852 #define uip_udp_bind(conn, port) (conn)->lport = port 00853 00854 /** 00855 * Send a UDP datagram of length len on the current connection. 00856 * 00857 * This function can only be called in response to a UDP event (poll 00858 * or newdata). The data must be present in the uip_buf buffer, at the 00859 * place pointed to by the uip_appdata pointer. 00860 * 00861 * \param len The length of the data in the uip_buf buffer. 00862 * 00863 * \hideinitializer 00864 */ 00865 #define uip_udp_send(len) uip_send((char *)uip_appdata, len) 00866 00867 /** @} */ 00868 00869 /* uIP convenience and converting functions. */ 00870 00871 /** 00872 * \defgroup uipconvfunc uIP conversion functions 00873 * @{ 00874 * 00875 * These functions can be used for converting between different data 00876 * formats used by uIP. 00877 */ 00878 00879 /** 00880 * Convert an IP address to four bytes separated by commas. 00881 * 00882 * Example: 00883 \code 00884 uip_ipaddr_t ipaddr; 00885 printf("ipaddr=%d.%d.%d.%d\n", uip_ipaddr_to_quad(&ipaddr)); 00886 \endcode 00887 * 00888 * \param a A pointer to a uip_ipaddr_t. 00889 * \hideinitializer 00890 */ 00891 #define uip_ipaddr_to_quad(a) (a)->u8[0],(a)->u8[1],(a)->u8[2],(a)->u8[3] 00892 00893 /** 00894 * Construct an IP address from four bytes. 00895 * 00896 * This function constructs an IP address of the type that uIP handles 00897 * internally from four bytes. The function is handy for specifying IP 00898 * addresses to use with e.g. the uip_connect() function. 00899 * 00900 * Example: 00901 \code 00902 uip_ipaddr_t ipaddr; 00903 struct uip_conn *c; 00904 00905 uip_ipaddr(&ipaddr, 192,168,1,2); 00906 c = uip_connect(&ipaddr, UIP_HTONS(80)); 00907 \endcode 00908 * 00909 * \param addr A pointer to a uip_ipaddr_t variable that will be 00910 * filled in with the IP address. 00911 * 00912 * \param addr0 The first octet of the IP address. 00913 * \param addr1 The second octet of the IP address. 00914 * \param addr2 The third octet of the IP address. 00915 * \param addr3 The forth octet of the IP address. 00916 * 00917 * \hideinitializer 00918 */ 00919 #define uip_ipaddr(addr, addr0,addr1,addr2,addr3) do { \ 00920 (addr)->u8[0] = addr0; \ 00921 (addr)->u8[1] = addr1; \ 00922 (addr)->u8[2] = addr2; \ 00923 (addr)->u8[3] = addr3; \ 00924 } while(0) 00925 00926 /** 00927 * Construct an IPv6 address from eight 16-bit words. 00928 * 00929 * This function constructs an IPv6 address. 00930 * 00931 * \hideinitializer 00932 */ 00933 #define uip_ip6addr(addr, addr0,addr1,addr2,addr3,addr4,addr5,addr6,addr7) do { \ 00934 (addr)->u16[0] = UIP_HTONS(addr0); \ 00935 (addr)->u16[1] = UIP_HTONS(addr1); \ 00936 (addr)->u16[2] = UIP_HTONS(addr2); \ 00937 (addr)->u16[3] = UIP_HTONS(addr3); \ 00938 (addr)->u16[4] = UIP_HTONS(addr4); \ 00939 (addr)->u16[5] = UIP_HTONS(addr5); \ 00940 (addr)->u16[6] = UIP_HTONS(addr6); \ 00941 (addr)->u16[7] = UIP_HTONS(addr7); \ 00942 } while(0) 00943 00944 /** 00945 * Construct an IPv6 address from eight 8-bit words. 00946 * 00947 * This function constructs an IPv6 address. 00948 * 00949 * \hideinitializer 00950 */ 00951 #define uip_ip6addr_u8(addr, addr0,addr1,addr2,addr3,addr4,addr5,addr6,addr7,addr8,addr9,addr10,addr11,addr12,addr13,addr14,addr15) do { \ 00952 (addr)->u8[0] = addr0; \ 00953 (addr)->u8[1] = addr1; \ 00954 (addr)->u8[2] = addr2; \ 00955 (addr)->u8[3] = addr3; \ 00956 (addr)->u8[4] = addr4; \ 00957 (addr)->u8[5] = addr5; \ 00958 (addr)->u8[6] = addr6; \ 00959 (addr)->u8[7] = addr7; \ 00960 (addr)->u8[8] = addr8; \ 00961 (addr)->u8[9] = addr9; \ 00962 (addr)->u8[10] = addr10; \ 00963 (addr)->u8[11] = addr11; \ 00964 (addr)->u8[12] = addr12; \ 00965 (addr)->u8[13] = addr13; \ 00966 (addr)->u8[14] = addr14; \ 00967 (addr)->u8[15] = addr15; \ 00968 } while(0) 00969 00970 00971 /** 00972 * Copy an IP address to another IP address. 00973 * 00974 * Copies an IP address from one place to another. 00975 * 00976 * Example: 00977 \code 00978 uip_ipaddr_t ipaddr1, ipaddr2; 00979 00980 uip_ipaddr(&ipaddr1, 192,16,1,2); 00981 uip_ipaddr_copy(&ipaddr2, &ipaddr1); 00982 \endcode 00983 * 00984 * \param dest The destination for the copy. 00985 * \param src The source from where to copy. 00986 * 00987 * \hideinitializer 00988 */ 00989 #ifndef uip_ipaddr_copy 00990 #define uip_ipaddr_copy(dest, src) (*(dest) = *(src)) 00991 #endif 00992 00993 /** 00994 * Compare two IP addresses 00995 * 00996 * Compares two IP addresses. 00997 * 00998 * Example: 00999 \code 01000 uip_ipaddr_t ipaddr1, ipaddr2; 01001 01002 uip_ipaddr(&ipaddr1, 192,16,1,2); 01003 if(uip_ipaddr_cmp(&ipaddr2, &ipaddr1)) { 01004 printf("They are the same"); 01005 } 01006 \endcode 01007 * 01008 * \param addr1 The first IP address. 01009 * \param addr2 The second IP address. 01010 * 01011 * \hideinitializer 01012 */ 01013 #if !UIP_CONF_IPV6 01014 #define uip_ipaddr_cmp(addr1, addr2) ((addr1)->u16[0] == (addr2)->u16[0] && \ 01015 (addr1)->u16[1] == (addr2)->u16[1]) 01016 #else /* !UIP_CONF_IPV6 */ 01017 #define uip_ipaddr_cmp(addr1, addr2) (memcmp(addr1, addr2, sizeof(uip_ip6addr_t)) == 0) 01018 #endif /* !UIP_CONF_IPV6 */ 01019 01020 /** 01021 * Compare two IP addresses with netmasks 01022 * 01023 * Compares two IP addresses with netmasks. The masks are used to mask 01024 * out the bits that are to be compared. 01025 * 01026 * Example: 01027 \code 01028 uip_ipaddr_t ipaddr1, ipaddr2, mask; 01029 01030 uip_ipaddr(&mask, 255,255,255,0); 01031 uip_ipaddr(&ipaddr1, 192,16,1,2); 01032 uip_ipaddr(&ipaddr2, 192,16,1,3); 01033 if(uip_ipaddr_maskcmp(&ipaddr1, &ipaddr2, &mask)) { 01034 printf("They are the same"); 01035 } 01036 \endcode 01037 * 01038 * \param addr1 The first IP address. 01039 * \param addr2 The second IP address. 01040 * \param mask The netmask. 01041 * 01042 * \hideinitializer 01043 */ 01044 #if !UIP_CONF_IPV6 01045 #define uip_ipaddr_maskcmp(addr1, addr2, mask) \ 01046 (((((u16_t *)addr1)[0] & ((u16_t *)mask)[0]) == \ 01047 (((u16_t *)addr2)[0] & ((u16_t *)mask)[0])) && \ 01048 ((((u16_t *)addr1)[1] & ((u16_t *)mask)[1]) == \ 01049 (((u16_t *)addr2)[1] & ((u16_t *)mask)[1]))) 01050 #else 01051 #define uip_ipaddr_prefixcmp(addr1, addr2, length) (memcmp(addr1, addr2, length>>3) == 0) 01052 #endif 01053 01054 01055 /** 01056 * Check if an address is a broadcast address for a network. 01057 * 01058 * Checks if an address is the broadcast address for a network. The 01059 * network is defined by an IP address that is on the network and the 01060 * network's netmask. 01061 * 01062 * \param addr The IP address. 01063 * \param netaddr The network's IP address. 01064 * \param netmask The network's netmask. 01065 * 01066 * \hideinitializer 01067 */ 01068 /*#define uip_ipaddr_isbroadcast(addr, netaddr, netmask) 01069 ((uip_ipaddr_t *)(addr)).u16 & ((uip_ipaddr_t *)(addr)).u16*/ 01070 01071 01072 01073 /** 01074 * Mask out the network part of an IP address. 01075 * 01076 * Masks out the network part of an IP address, given the address and 01077 * the netmask. 01078 * 01079 * Example: 01080 \code 01081 uip_ipaddr_t ipaddr1, ipaddr2, netmask; 01082 01083 uip_ipaddr(&ipaddr1, 192,16,1,2); 01084 uip_ipaddr(&netmask, 255,255,255,0); 01085 uip_ipaddr_mask(&ipaddr2, &ipaddr1, &netmask); 01086 \endcode 01087 * 01088 * In the example above, the variable "ipaddr2" will contain the IP 01089 * address 192.168.1.0. 01090 * 01091 * \param dest Where the result is to be placed. 01092 * \param src The IP address. 01093 * \param mask The netmask. 01094 * 01095 * \hideinitializer 01096 */ 01097 #define uip_ipaddr_mask(dest, src, mask) do { \ 01098 ((u16_t *)dest)[0] = ((u16_t *)src)[0] & ((u16_t *)mask)[0]; \ 01099 ((u16_t *)dest)[1] = ((u16_t *)src)[1] & ((u16_t *)mask)[1]; \ 01100 } while(0) 01101 01102 /** 01103 * Pick the first octet of an IP address. 01104 * 01105 * Picks out the first octet of an IP address. 01106 * 01107 * Example: 01108 \code 01109 uip_ipaddr_t ipaddr; 01110 u8_t octet; 01111 01112 uip_ipaddr(&ipaddr, 1,2,3,4); 01113 octet = uip_ipaddr1(&ipaddr); 01114 \endcode 01115 * 01116 * In the example above, the variable "octet" will contain the value 1. 01117 * 01118 * \hideinitializer 01119 */ 01120 #define uip_ipaddr1(addr) ((addr)->u8[0]) 01121 01122 /** 01123 * Pick the second octet of an IP address. 01124 * 01125 * Picks out the second octet of an IP address. 01126 * 01127 * Example: 01128 \code 01129 uip_ipaddr_t ipaddr; 01130 u8_t octet; 01131 01132 uip_ipaddr(&ipaddr, 1,2,3,4); 01133 octet = uip_ipaddr2(&ipaddr); 01134 \endcode 01135 * 01136 * In the example above, the variable "octet" will contain the value 2. 01137 * 01138 * \hideinitializer 01139 */ 01140 #define uip_ipaddr2(addr) ((addr)->u8[1]) 01141 01142 /** 01143 * Pick the third octet of an IP address. 01144 * 01145 * Picks out the third octet of an IP address. 01146 * 01147 * Example: 01148 \code 01149 uip_ipaddr_t ipaddr; 01150 u8_t octet; 01151 01152 uip_ipaddr(&ipaddr, 1,2,3,4); 01153 octet = uip_ipaddr3(&ipaddr); 01154 \endcode 01155 * 01156 * In the example above, the variable "octet" will contain the value 3. 01157 * 01158 * \hideinitializer 01159 */ 01160 #define uip_ipaddr3(addr) ((addr)->u8[2]) 01161 01162 /** 01163 * Pick the fourth octet of an IP address. 01164 * 01165 * Picks out the fourth octet of an IP address. 01166 * 01167 * Example: 01168 \code 01169 uip_ipaddr_t ipaddr; 01170 u8_t octet; 01171 01172 uip_ipaddr(&ipaddr, 1,2,3,4); 01173 octet = uip_ipaddr4(&ipaddr); 01174 \endcode 01175 * 01176 * In the example above, the variable "octet" will contain the value 4. 01177 * 01178 * \hideinitializer 01179 */ 01180 #define uip_ipaddr4(addr) ((addr)->u8[3]) 01181 01182 /** 01183 * Convert 16-bit quantity from host byte order to network byte order. 01184 * 01185 * This macro is primarily used for converting constants from host 01186 * byte order to network byte order. For converting variables to 01187 * network byte order, use the uip_htons() function instead. 01188 * 01189 * \hideinitializer 01190 */ 01191 #ifndef UIP_HTONS 01192 # if UIP_BYTE_ORDER == UIP_BIG_ENDIAN 01193 # define UIP_HTONS(n) (n) 01194 # define UIP_HTONL(n) (n) 01195 # else /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */ 01196 # define UIP_HTONS(n) (u16_t)((((u16_t) (n)) << 8) | (((u16_t) (n)) >> 8)) 01197 # define UIP_HTONL(n) (((u32_t)UIP_HTONS(n) << 16) | UIP_HTONS((u32_t)(n) >> 16)) 01198 # endif /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */ 01199 #else 01200 #error "UIP_HTONS already defined!" 01201 #endif /* UIP_HTONS */ 01202 01203 /** 01204 * Convert 16-bit quantity from host byte order to network byte order. 01205 * 01206 * This function is primarily used for converting variables from host 01207 * byte order to network byte order. For converting constants to 01208 * network byte order, use the UIP_HTONS() macro instead. 01209 */ 01210 #ifndef uip_htons 01211 CCIF u16_t uip_htons(u16_t val); 01212 #endif /* uip_htons */ 01213 #ifndef uip_ntohs 01214 #define uip_ntohs uip_htons 01215 #endif 01216 01217 #ifndef uip_htonl 01218 CCIF u32_t uip_htonl(u32_t val); 01219 #endif /* uip_htonl */ 01220 #ifndef uip_ntohl 01221 #define uip_ntohl uip_htonl 01222 #endif 01223 01224 /** @} */ 01225 01226 /** 01227 * Pointer to the application data in the packet buffer. 01228 * 01229 * This pointer points to the application data when the application is 01230 * called. If the application wishes to send data, the application may 01231 * use this space to write the data into before calling uip_send(). 01232 */ 01233 CCIF extern void *uip_appdata; 01234 01235 #if UIP_URGDATA > 0 01236 /* u8_t *uip_urgdata: 01237 * 01238 * This pointer points to any urgent data that has been received. Only 01239 * present if compiled with support for urgent data (UIP_URGDATA). 01240 */ 01241 extern void *uip_urgdata; 01242 #endif /* UIP_URGDATA > 0 */ 01243 01244 01245 /** 01246 * \defgroup uipdrivervars Variables used in uIP device drivers 01247 * @{ 01248 * 01249 * uIP has a few global variables that are used in device drivers for 01250 * uIP. 01251 */ 01252 01253 /** 01254 * The length of the packet in the uip_buf buffer. 01255 * 01256 * The global variable uip_len holds the length of the packet in the 01257 * uip_buf buffer. 01258 * 01259 * When the network device driver calls the uIP input function, 01260 * uip_len should be set to the length of the packet in the uip_buf 01261 * buffer. 01262 * 01263 * When sending packets, the device driver should use the contents of 01264 * the uip_len variable to determine the length of the outgoing 01265 * packet. 01266 * 01267 */ 01268 CCIF extern u16_t uip_len; 01269 01270 /** 01271 * The length of the extension headers 01272 */ 01273 extern u8_t uip_ext_len; 01274 /** @} */ 01275 01276 #if UIP_URGDATA > 0 01277 extern u16_t uip_urglen, uip_surglen; 01278 #endif /* UIP_URGDATA > 0 */ 01279 01280 01281 /** 01282 * Representation of a uIP TCP connection. 01283 * 01284 * The uip_conn structure is used for identifying a connection. All 01285 * but one field in the structure are to be considered read-only by an 01286 * application. The only exception is the appstate field whose purpose 01287 * is to let the application store application-specific state (e.g., 01288 * file pointers) for the connection. The type of this field is 01289 * configured in the "uipopt.h" header file. 01290 */ 01291 struct uip_conn { 01292 uip_ipaddr_t ripaddr; /**< The IP address of the remote host. */ 01293 01294 u16_t lport; /**< The local TCP port, in network byte order. */ 01295 u16_t rport; /**< The local remote TCP port, in network byte 01296 order. */ 01297 01298 u8_t rcv_nxt[4]; /**< The sequence number that we expect to 01299 receive next. */ 01300 u8_t snd_nxt[4]; /**< The sequence number that was last sent by 01301 us. */ 01302 u16_t len; /**< Length of the data that was previously sent. */ 01303 u16_t mss; /**< Current maximum segment size for the 01304 connection. */ 01305 u16_t initialmss; /**< Initial maximum segment size for the 01306 connection. */ 01307 u8_t sa; /**< Retransmission time-out calculation state 01308 variable. */ 01309 u8_t sv; /**< Retransmission time-out calculation state 01310 variable. */ 01311 u8_t rto; /**< Retransmission time-out. */ 01312 u8_t tcpstateflags; /**< TCP state and flags. */ 01313 u8_t timer; /**< The retransmission timer. */ 01314 u8_t nrtx; /**< The number of retransmissions for the last 01315 segment sent. */ 01316 01317 /** The application state. */ 01318 uip_tcp_appstate_t appstate; 01319 }; 01320 01321 01322 /** 01323 * Pointer to the current TCP connection. 01324 * 01325 * The uip_conn pointer can be used to access the current TCP 01326 * connection. 01327 */ 01328 01329 CCIF extern struct uip_conn *uip_conn; 01330 #if UIP_TCP 01331 /* The array containing all uIP connections. */ 01332 CCIF extern struct uip_conn uip_conns[UIP_CONNS]; 01333 #endif 01334 01335 /** 01336 * \addtogroup uiparch 01337 * @{ 01338 */ 01339 01340 /** 01341 * 4-byte array used for the 32-bit sequence number calculations. 01342 */ 01343 extern u8_t uip_acc32[4]; 01344 /** @} */ 01345 01346 /** 01347 * Representation of a uIP UDP connection. 01348 */ 01349 struct uip_udp_conn { 01350 uip_ipaddr_t ripaddr; /**< The IP address of the remote peer. */ 01351 u16_t lport; /**< The local port number in network byte order. */ 01352 u16_t rport; /**< The remote port number in network byte order. */ 01353 u8_t ttl; /**< Default time-to-live. */ 01354 01355 /** The application state. */ 01356 uip_udp_appstate_t appstate; 01357 }; 01358 01359 /** 01360 * The current UDP connection. 01361 */ 01362 extern struct uip_udp_conn *uip_udp_conn; 01363 extern struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS]; 01364 01365 struct uip_fallback_interface { 01366 void (*init)(void); 01367 void (*output)(void); 01368 }; 01369 01370 #if UIP_CONF_ICMP6 01371 struct uip_icmp6_conn { 01372 uip_icmp6_appstate_t appstate; 01373 }; 01374 extern struct uip_icmp6_conn uip_icmp6_conns; 01375 #endif /*UIP_CONF_ICMP6*/ 01376 01377 /** 01378 * The uIP TCP/IP statistics. 01379 * 01380 * This is the variable in which the uIP TCP/IP statistics are gathered. 01381 */ 01382 #if UIP_STATISTICS == 1 01383 extern struct uip_stats uip_stat; 01384 #define UIP_STAT(s) s 01385 #else 01386 #define UIP_STAT(s) 01387 #endif /* UIP_STATISTICS == 1 */ 01388 01389 /** 01390 * The structure holding the TCP/IP statistics that are gathered if 01391 * UIP_STATISTICS is set to 1. 01392 * 01393 */ 01394 struct uip_stats { 01395 struct { 01396 uip_stats_t recv; /**< Number of received packets at the IP 01397 layer. */ 01398 uip_stats_t sent; /**< Number of sent packets at the IP 01399 layer. */ 01400 uip_stats_t forwarded;/**< Number of forwarded packets at the IP 01401 layer. */ 01402 uip_stats_t drop; /**< Number of dropped packets at the IP 01403 layer. */ 01404 uip_stats_t vhlerr; /**< Number of packets dropped due to wrong 01405 IP version or header length. */ 01406 uip_stats_t hblenerr; /**< Number of packets dropped due to wrong 01407 IP length, high byte. */ 01408 uip_stats_t lblenerr; /**< Number of packets dropped due to wrong 01409 IP length, low byte. */ 01410 uip_stats_t fragerr; /**< Number of packets dropped since they 01411 were IP fragments. */ 01412 uip_stats_t chkerr; /**< Number of packets dropped due to IP 01413 checksum errors. */ 01414 uip_stats_t protoerr; /**< Number of packets dropped since they 01415 were neither ICMP, UDP nor TCP. */ 01416 } ip; /**< IP statistics. */ 01417 struct { 01418 uip_stats_t recv; /**< Number of received ICMP packets. */ 01419 uip_stats_t sent; /**< Number of sent ICMP packets. */ 01420 uip_stats_t drop; /**< Number of dropped ICMP packets. */ 01421 uip_stats_t typeerr; /**< Number of ICMP packets with a wrong 01422 type. */ 01423 uip_stats_t chkerr; /**< Number of ICMP packets with a bad 01424 checksum. */ 01425 } icmp; /**< ICMP statistics. */ 01426 #if UIP_TCP 01427 struct { 01428 uip_stats_t recv; /**< Number of recived TCP segments. */ 01429 uip_stats_t sent; /**< Number of sent TCP segments. */ 01430 uip_stats_t drop; /**< Number of dropped TCP segments. */ 01431 uip_stats_t chkerr; /**< Number of TCP segments with a bad 01432 checksum. */ 01433 uip_stats_t ackerr; /**< Number of TCP segments with a bad ACK 01434 number. */ 01435 uip_stats_t rst; /**< Number of recevied TCP RST (reset) segments. */ 01436 uip_stats_t rexmit; /**< Number of retransmitted TCP segments. */ 01437 uip_stats_t syndrop; /**< Number of dropped SYNs due to too few 01438 connections was avaliable. */ 01439 uip_stats_t synrst; /**< Number of SYNs for closed ports, 01440 triggering a RST. */ 01441 } tcp; /**< TCP statistics. */ 01442 #endif 01443 #if UIP_UDP 01444 struct { 01445 uip_stats_t drop; /**< Number of dropped UDP segments. */ 01446 uip_stats_t recv; /**< Number of recived UDP segments. */ 01447 uip_stats_t sent; /**< Number of sent UDP segments. */ 01448 uip_stats_t chkerr; /**< Number of UDP segments with a bad 01449 checksum. */ 01450 } udp; /**< UDP statistics. */ 01451 #endif /* UIP_UDP */ 01452 #if UIP_CONF_IPV6 01453 struct { 01454 uip_stats_t drop; /**< Number of dropped ND6 packets. */ 01455 uip_stats_t recv; /**< Number of recived ND6 packets */ 01456 uip_stats_t sent; /**< Number of sent ND6 packets */ 01457 } nd6; 01458 #endif /*UIP_CONF_IPV6*/ 01459 }; 01460 01461 01462 /*---------------------------------------------------------------------------*/ 01463 /* All the stuff below this point is internal to uIP and should not be 01464 * used directly by an application or by a device driver. 01465 */ 01466 /*---------------------------------------------------------------------------*/ 01467 01468 01469 01470 /* u8_t uip_flags: 01471 * 01472 * When the application is called, uip_flags will contain the flags 01473 * that are defined in this file. Please read below for more 01474 * information. 01475 */ 01476 CCIF extern u8_t uip_flags; 01477 01478 /* The following flags may be set in the global variable uip_flags 01479 before calling the application callback. The UIP_ACKDATA, 01480 UIP_NEWDATA, and UIP_CLOSE flags may both be set at the same time, 01481 whereas the others are mutually exclusive. Note that these flags 01482 should *NOT* be accessed directly, but only through the uIP 01483 functions/macros. */ 01484 01485 #define UIP_ACKDATA 1 /* Signifies that the outstanding data was 01486 acked and the application should send 01487 out new data instead of retransmitting 01488 the last data. */ 01489 #define UIP_NEWDATA 2 /* Flags the fact that the peer has sent 01490 us new data. */ 01491 #define UIP_REXMIT 4 /* Tells the application to retransmit the 01492 data that was last sent. */ 01493 #define UIP_POLL 8 /* Used for polling the application, to 01494 check if the application has data that 01495 it wants to send. */ 01496 #define UIP_CLOSE 16 /* The remote host has closed the 01497 connection, thus the connection has 01498 gone away. Or the application signals 01499 that it wants to close the 01500 connection. */ 01501 #define UIP_ABORT 32 /* The remote host has aborted the 01502 connection, thus the connection has 01503 gone away. Or the application signals 01504 that it wants to abort the 01505 connection. */ 01506 #define UIP_CONNECTED 64 /* We have got a connection from a remote 01507 host and have set up a new connection 01508 for it, or an active connection has 01509 been successfully established. */ 01510 01511 #define UIP_TIMEDOUT 128 /* The connection has been aborted due to 01512 too many retransmissions. */ 01513 01514 01515 /** 01516 * \brief process the options within a hop by hop or destination option header 01517 * \retval 0: nothing to send, 01518 * \retval 1: drop pkt 01519 * \retval 2: ICMP error message to send 01520 */ 01521 /*static u8_t 01522 uip_ext_hdr_options_process(); */ 01523 01524 /* uip_process(flag): 01525 * 01526 * The actual uIP function which does all the work. 01527 */ 01528 void uip_process(u8_t flag); 01529 01530 /* The following flags are passed as an argument to the uip_process() 01531 function. They are used to distinguish between the two cases where 01532 uip_process() is called. It can be called either because we have 01533 incoming data that should be processed, or because the periodic 01534 timer has fired. These values are never used directly, but only in 01535 the macros defined in this file. */ 01536 01537 #define UIP_DATA 1 /* Tells uIP that there is incoming 01538 data in the uip_buf buffer. The 01539 length of the data is stored in the 01540 global variable uip_len. */ 01541 #define UIP_TIMER 2 /* Tells uIP that the periodic timer 01542 has fired. */ 01543 #define UIP_POLL_REQUEST 3 /* Tells uIP that a connection should 01544 be polled. */ 01545 #define UIP_UDP_SEND_CONN 4 /* Tells uIP that a UDP datagram 01546 should be constructed in the 01547 uip_buf buffer. */ 01548 #if UIP_UDP 01549 #define UIP_UDP_TIMER 5 01550 #endif /* UIP_UDP */ 01551 01552 /* The TCP states used in the uip_conn->tcpstateflags. */ 01553 #define UIP_CLOSED 0 01554 #define UIP_SYN_RCVD 1 01555 #define UIP_SYN_SENT 2 01556 #define UIP_ESTABLISHED 3 01557 #define UIP_FIN_WAIT_1 4 01558 #define UIP_FIN_WAIT_2 5 01559 #define UIP_CLOSING 6 01560 #define UIP_TIME_WAIT 7 01561 #define UIP_LAST_ACK 8 01562 #define UIP_TS_MASK 15 01563 01564 #define UIP_STOPPED 16 01565 01566 /* The TCP and IP headers. */ 01567 struct uip_tcpip_hdr { 01568 #if UIP_CONF_IPV6 01569 /* IPv6 header. */ 01570 u8_t vtc, 01571 tcflow; 01572 u16_t flow; 01573 u8_t len[2]; 01574 u8_t proto, ttl; 01575 uip_ip6addr_t srcipaddr, destipaddr; 01576 #else /* UIP_CONF_IPV6 */ 01577 /* IPv4 header. */ 01578 u8_t vhl, 01579 tos, 01580 len[2], 01581 ipid[2], 01582 ipoffset[2], 01583 ttl, 01584 proto; 01585 u16_t ipchksum; 01586 uip_ipaddr_t srcipaddr, destipaddr; 01587 #endif /* UIP_CONF_IPV6 */ 01588 01589 /* TCP header. */ 01590 u16_t srcport, 01591 destport; 01592 u8_t seqno[4], 01593 ackno[4], 01594 tcpoffset, 01595 flags, 01596 wnd[2]; 01597 u16_t tcpchksum; 01598 u8_t urgp[2]; 01599 u8_t optdata[4]; 01600 }; 01601 01602 /* The ICMP and IP headers. */ 01603 struct uip_icmpip_hdr { 01604 #if UIP_CONF_IPV6 01605 /* IPv6 header. */ 01606 u8_t vtc, 01607 tcf; 01608 u16_t flow; 01609 u8_t len[2]; 01610 u8_t proto, ttl; 01611 uip_ip6addr_t srcipaddr, destipaddr; 01612 #else /* UIP_CONF_IPV6 */ 01613 /* IPv4 header. */ 01614 u8_t vhl, 01615 tos, 01616 len[2], 01617 ipid[2], 01618 ipoffset[2], 01619 ttl, 01620 proto; 01621 u16_t ipchksum; 01622 uip_ipaddr_t srcipaddr, destipaddr; 01623 #endif /* UIP_CONF_IPV6 */ 01624 01625 /* ICMP header. */ 01626 u8_t type, icode; 01627 u16_t icmpchksum; 01628 #if !UIP_CONF_IPV6 01629 u16_t id, seqno; 01630 u8_t payload[1]; 01631 #endif /* !UIP_CONF_IPV6 */ 01632 }; 01633 01634 01635 /* The UDP and IP headers. */ 01636 struct uip_udpip_hdr { 01637 #if UIP_CONF_IPV6 01638 /* IPv6 header. */ 01639 u8_t vtc, 01640 tcf; 01641 u16_t flow; 01642 u8_t len[2]; 01643 u8_t proto, ttl; 01644 uip_ip6addr_t srcipaddr, destipaddr; 01645 #else /* UIP_CONF_IPV6 */ 01646 /* IP header. */ 01647 u8_t vhl, 01648 tos, 01649 len[2], 01650 ipid[2], 01651 ipoffset[2], 01652 ttl, 01653 proto; 01654 u16_t ipchksum; 01655 uip_ipaddr_t srcipaddr, destipaddr; 01656 #endif /* UIP_CONF_IPV6 */ 01657 01658 /* UDP header. */ 01659 u16_t srcport, 01660 destport; 01661 u16_t udplen; 01662 u16_t udpchksum; 01663 }; 01664 01665 /* 01666 * In IPv6 the length of the L3 headers before the transport header is 01667 * not fixed, due to the possibility to include extension option headers 01668 * after the IP header. hence we split here L3 and L4 headers 01669 */ 01670 /* The IP header */ 01671 struct uip_ip_hdr { 01672 #if UIP_CONF_IPV6 01673 /* IPV6 header */ 01674 u8_t vtc; 01675 u8_t tcflow; 01676 u16_t flow; 01677 u8_t len[2]; 01678 u8_t proto, ttl; 01679 uip_ip6addr_t srcipaddr, destipaddr; 01680 #else /* UIP_CONF_IPV6 */ 01681 /* IPV4 header */ 01682 u8_t vhl, 01683 tos, 01684 len[2], 01685 ipid[2], 01686 ipoffset[2], 01687 ttl, 01688 proto; 01689 u16_t ipchksum; 01690 uip_ipaddr_t srcipaddr, destipaddr; 01691 #endif /* UIP_CONF_IPV6 */ 01692 }; 01693 01694 01695 /* 01696 * IPv6 extension option headers: we are able to process 01697 * the 4 extension headers defined in RFC2460 (IPv6): 01698 * - Hop by hop option header, destination option header: 01699 * These two are not used by any core IPv6 protocol, hence 01700 * we just read them and go to the next. They convey options, 01701 * the options defined in RFC2460 are Pad1 and PadN, which do 01702 * some padding, and that we do not need to read (the length 01703 * field in the header is enough) 01704 * - Routing header: this one is most notably used by MIPv6, 01705 * which we do not implement, hence we just read it and go 01706 * to the next 01707 * - Fragmentation header: we read this header and are able to 01708 * reassemble packets 01709 * 01710 * We do not offer any means to send packets with extension headers 01711 * 01712 * We do not implement Authentication and ESP headers, which are 01713 * used in IPSec and defined in RFC4302,4303,4305,4385 01714 */ 01715 /* common header part */ 01716 typedef struct uip_ext_hdr { 01717 u8_t next; 01718 u8_t len; 01719 } uip_ext_hdr; 01720 01721 /* Hop by Hop option header */ 01722 typedef struct uip_hbho_hdr { 01723 u8_t next; 01724 u8_t len; 01725 } uip_hbho_hdr; 01726 01727 /* destination option header */ 01728 typedef struct uip_desto_hdr { 01729 u8_t next; 01730 u8_t len; 01731 } uip_desto_hdr; 01732 01733 /* We do not define structures for PAD1 and PADN options */ 01734 01735 /* 01736 * routing header 01737 * the routing header as 4 common bytes, then routing header type 01738 * specific data there are several types of routing header. Type 0 was 01739 * deprecated as per RFC5095 most notable other type is 2, used in 01740 * RFC3775 (MIPv6) here we do not implement MIPv6, so we just need to 01741 * parse the 4 first bytes 01742 */ 01743 typedef struct uip_routing_hdr { 01744 u8_t next; 01745 u8_t len; 01746 u8_t routing_type; 01747 u8_t seg_left; 01748 } uip_routing_hdr; 01749 01750 /* fragmentation header */ 01751 typedef struct uip_frag_hdr { 01752 u8_t next; 01753 u8_t res; 01754 u16_t offsetresmore; 01755 u32_t id; 01756 } uip_frag_hdr; 01757 01758 /* 01759 * an option within the destination or hop by hop option headers 01760 * it contains type an length, which is true for all options but PAD1 01761 */ 01762 typedef struct uip_ext_hdr_opt { 01763 u8_t type; 01764 u8_t len; 01765 } uip_ext_hdr_opt; 01766 01767 /* PADN option */ 01768 typedef struct uip_ext_hdr_opt_padn { 01769 u8_t opt_type; 01770 u8_t opt_len; 01771 } uip_ext_hdr_opt_padn; 01772 01773 /* TCP header */ 01774 struct uip_tcp_hdr { 01775 u16_t srcport; 01776 u16_t destport; 01777 u8_t seqno[4]; 01778 u8_t ackno[4]; 01779 u8_t tcpoffset; 01780 u8_t flags; 01781 u8_t wnd[2]; 01782 u16_t tcpchksum; 01783 u8_t urgp[2]; 01784 u8_t optdata[4]; 01785 }; 01786 01787 /* The ICMP headers. */ 01788 struct uip_icmp_hdr { 01789 u8_t type, icode; 01790 u16_t icmpchksum; 01791 #if !UIP_CONF_IPV6 01792 u16_t id, seqno; 01793 #endif /* !UIP_CONF_IPV6 */ 01794 }; 01795 01796 01797 /* The UDP headers. */ 01798 struct uip_udp_hdr { 01799 u16_t srcport; 01800 u16_t destport; 01801 u16_t udplen; 01802 u16_t udpchksum; 01803 }; 01804 01805 01806 /** 01807 * The buffer size available for user data in the \ref uip_buf buffer. 01808 * 01809 * This macro holds the available size for user data in the \ref 01810 * uip_buf buffer. The macro is intended to be used for checking 01811 * bounds of available user data. 01812 * 01813 * Example: 01814 \code 01815 snprintf(uip_appdata, UIP_APPDATA_SIZE, "%u\n", i); 01816 \endcode 01817 * 01818 * \hideinitializer 01819 */ 01820 #define UIP_APPDATA_SIZE (UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN) 01821 #define UIP_APPDATA_PTR (void *)&uip_buf[UIP_LLH_LEN + UIP_TCPIP_HLEN] 01822 01823 #define UIP_PROTO_ICMP 1 01824 #define UIP_PROTO_TCP 6 01825 #define UIP_PROTO_UDP 17 01826 #define UIP_PROTO_ICMP6 58 01827 01828 01829 #if UIP_CONF_IPV6 01830 /** @{ */ 01831 /** \brief extension headers types */ 01832 #define UIP_PROTO_HBHO 0 01833 #define UIP_PROTO_DESTO 60 01834 #define UIP_PROTO_ROUTING 43 01835 #define UIP_PROTO_FRAG 44 01836 #define UIP_PROTO_NONE 59 01837 /** @} */ 01838 01839 /** @{ */ 01840 /** \brief Destination and Hop By Hop extension headers option types */ 01841 #define UIP_EXT_HDR_OPT_PAD1 0 01842 #define UIP_EXT_HDR_OPT_PADN 1 01843 /** @} */ 01844 01845 /** @{ */ 01846 /** 01847 * \brief Bitmaps for extension header processing 01848 * 01849 * When processing extension headers, we should record somehow which one we 01850 * see, because you cannot have twice the same header, except for destination 01851 * We store all this in one u8_t bitmap one bit for each header expected. The 01852 * order in the bitmap is the order recommended in RFC2460 01853 */ 01854 #define UIP_EXT_HDR_BITMAP_HBHO 0x01 01855 #define UIP_EXT_HDR_BITMAP_DESTO1 0x02 01856 #define UIP_EXT_HDR_BITMAP_ROUTING 0x04 01857 #define UIP_EXT_HDR_BITMAP_FRAG 0x08 01858 #define UIP_EXT_HDR_BITMAP_AH 0x10 01859 #define UIP_EXT_HDR_BITMAP_ESP 0x20 01860 #define UIP_EXT_HDR_BITMAP_DESTO2 0x40 01861 /** @} */ 01862 01863 01864 #endif /* UIP_CONF_IPV6 */ 01865 01866 01867 /* Header sizes. */ 01868 #if UIP_CONF_IPV6 01869 #define UIP_IPH_LEN 40 01870 #define UIP_FRAGH_LEN 8 01871 #else /* UIP_CONF_IPV6 */ 01872 #define UIP_IPH_LEN 20 /* Size of IP header */ 01873 #endif /* UIP_CONF_IPV6 */ 01874 01875 #define UIP_UDPH_LEN 8 /* Size of UDP header */ 01876 #define UIP_TCPH_LEN 20 /* Size of TCP header */ 01877 #ifdef UIP_IPH_LEN 01878 #define UIP_ICMPH_LEN 4 /* Size of ICMP header */ 01879 #endif 01880 #define UIP_IPUDPH_LEN (UIP_UDPH_LEN + UIP_IPH_LEN) /* Size of IP + 01881 * UDP 01882 * header */ 01883 #define UIP_IPTCPH_LEN (UIP_TCPH_LEN + UIP_IPH_LEN) /* Size of IP + 01884 * TCP 01885 * header */ 01886 #define UIP_TCPIP_HLEN UIP_IPTCPH_LEN 01887 #define UIP_IPICMPH_LEN (UIP_IPH_LEN + UIP_ICMPH_LEN) /* size of ICMP 01888 + IP header */ 01889 #define UIP_LLIPH_LEN (UIP_LLH_LEN + UIP_IPH_LEN) /* size of L2 01890 + IP header */ 01891 #if UIP_CONF_IPV6 01892 /** 01893 * The sums below are quite used in ND. When used for uip_buf, we 01894 * include link layer length when used for uip_len, we do not, hence 01895 * we need values with and without LLH_LEN we do not use capital 01896 * letters as these values are variable 01897 */ 01898 #define uip_l2_l3_hdr_len (UIP_LLH_LEN + UIP_IPH_LEN + uip_ext_len) 01899 #define uip_l2_l3_icmp_hdr_len (UIP_LLH_LEN + UIP_IPH_LEN + uip_ext_len + UIP_ICMPH_LEN) 01900 #define uip_l3_hdr_len (UIP_IPH_LEN + uip_ext_len) 01901 #define uip_l3_icmp_hdr_len (UIP_IPH_LEN + uip_ext_len + UIP_ICMPH_LEN) 01902 #endif /*UIP_CONF_IPV6*/ 01903 01904 01905 #if UIP_FIXEDADDR 01906 CCIF extern const uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr; 01907 #else /* UIP_FIXEDADDR */ 01908 CCIF extern uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr; 01909 #endif /* UIP_FIXEDADDR */ 01910 CCIF extern const uip_ipaddr_t uip_broadcast_addr; 01911 CCIF extern const uip_ipaddr_t uip_all_zeroes_addr; 01912 01913 #if UIP_FIXEDETHADDR 01914 CCIF extern const uip_lladdr_t uip_lladdr; 01915 #else 01916 CCIF extern uip_lladdr_t uip_lladdr; 01917 #endif 01918 01919 01920 01921 01922 #ifdef UIP_CONF_IPV6 01923 /** Length of the link local prefix */ 01924 #define UIP_LLPREF_LEN 10 01925 01926 /** 01927 * \brief Is IPv6 address a the unspecified address 01928 * a is of type uip_ipaddr_t 01929 */ 01930 #define uip_is_addr_loopback(a) \ 01931 ((((a)->u16[0]) == 0) && \ 01932 (((a)->u16[1]) == 0) && \ 01933 (((a)->u16[2]) == 0) && \ 01934 (((a)->u16[3]) == 0) && \ 01935 (((a)->u16[4]) == 0) && \ 01936 (((a)->u16[5]) == 0) && \ 01937 (((a)->u16[6]) == 0) && \ 01938 (((a)->u16[7]) == 1)) 01939 /** 01940 * \brief Is IPv6 address a the unspecified address 01941 * a is of type uip_ipaddr_t 01942 */ 01943 #define uip_is_addr_unspecified(a) \ 01944 ((((a)->u16[0]) == 0) && \ 01945 (((a)->u16[1]) == 0) && \ 01946 (((a)->u16[2]) == 0) && \ 01947 (((a)->u16[3]) == 0) && \ 01948 (((a)->u16[4]) == 0) && \ 01949 (((a)->u16[5]) == 0) && \ 01950 (((a)->u16[6]) == 0) && \ 01951 (((a)->u16[7]) == 0)) 01952 01953 /** \brief Is IPv6 address a the link local all-nodes multicast address */ 01954 #define uip_is_addr_linklocal_allnodes_mcast(a) \ 01955 ((((a)->u8[0]) == 0xff) && \ 01956 (((a)->u8[1]) == 0x02) && \ 01957 (((a)->u16[1]) == 0) && \ 01958 (((a)->u16[2]) == 0) && \ 01959 (((a)->u16[3]) == 0) && \ 01960 (((a)->u16[4]) == 0) && \ 01961 (((a)->u16[5]) == 0) && \ 01962 (((a)->u16[6]) == 0) && \ 01963 (((a)->u8[14]) == 0) && \ 01964 (((a)->u8[15]) == 0x01)) 01965 01966 /** \brief Is IPv6 address a the link local all-routers multicast address */ 01967 #define uip_is_addr_linklocal_allrouters_mcast(a) \ 01968 ((((a)->u8[0]) == 0xff) && \ 01969 (((a)->u8[1]) == 0x02) && \ 01970 (((a)->u16[1]) == 0) && \ 01971 (((a)->u16[2]) == 0) && \ 01972 (((a)->u16[3]) == 0) && \ 01973 (((a)->u16[4]) == 0) && \ 01974 (((a)->u16[5]) == 0) && \ 01975 (((a)->u16[6]) == 0) && \ 01976 (((a)->u8[14]) == 0) && \ 01977 (((a)->u8[15]) == 0x02)) 01978 01979 /** 01980 * \brief Checks whether the address a is link local. 01981 * a is of type uip_ipaddr_t 01982 */ 01983 #define uip_is_addr_linklocal(a) \ 01984 ((a)->u8[0] == 0xfe && \ 01985 (a)->u8[1] == 0x80) 01986 01987 /** \brief set IP address a to unspecified */ 01988 #define uip_create_unspecified(a) uip_ip6addr(a, 0, 0, 0, 0, 0, 0, 0, 0) 01989 01990 /** \brief set IP address a to the link local all-nodes multicast address */ 01991 #define uip_create_linklocal_allnodes_mcast(a) uip_ip6addr(a, 0xff02, 0, 0, 0, 0, 0, 0, 0x0001) 01992 01993 /** \brief set IP address a to the link local all-routers multicast address */ 01994 #define uip_create_linklocal_allrouters_mcast(a) uip_ip6addr(a, 0xff02, 0, 0, 0, 0, 0, 0, 0x0002) 01995 #define uip_create_linklocal_prefix(addr) do { \ 01996 (addr)->u16[0] = UIP_HTONS(0xfe80); \ 01997 (addr)->u16[1] = 0; \ 01998 (addr)->u16[2] = 0; \ 01999 (addr)->u16[3] = 0; \ 02000 } while(0) 02001 02002 /** 02003 * \brief is addr (a) a solicited node multicast address, see RFC3513 02004 * a is of type uip_ipaddr_t* 02005 */ 02006 #define uip_is_addr_solicited_node(a) \ 02007 ((((a)->u8[0]) == 0xFF) && \ 02008 (((a)->u8[1]) == 0x02) && \ 02009 (((a)->u16[1]) == 0x00) && \ 02010 (((a)->u16[2]) == 0x00) && \ 02011 (((a)->u16[3]) == 0x00) && \ 02012 (((a)->u16[4]) == 0x00) && \ 02013 (((a)->u8[10]) == 0x00) && \ 02014 (((a)->u8[11]) == 0x01) && \ 02015 (((a)->u8[12]) == 0xFF)) 02016 02017 /** 02018 * \briefput in b the solicited node address corresponding to address a 02019 * both a and b are of type uip_ipaddr_t* 02020 * */ 02021 #define uip_create_solicited_node(a, b) \ 02022 (((b)->u8[0]) = 0xFF); \ 02023 (((b)->u8[1]) = 0x02); \ 02024 (((b)->u16[1]) = 0); \ 02025 (((b)->u16[2]) = 0); \ 02026 (((b)->u16[3]) = 0); \ 02027 (((b)->u16[4]) = 0); \ 02028 (((b)->u8[10]) = 0); \ 02029 (((b)->u8[11]) = 0x01); \ 02030 (((b)->u8[12]) = 0xFF); \ 02031 (((b)->u8[13]) = ((a)->u8[13])); \ 02032 (((b)->u16[7]) = ((a)->u16[7])) 02033 02034 /** 02035 * \brief is addr (a) a link local unicast address, see RFC3513 02036 * i.e. is (a) on prefix FE80::/10 02037 * a is of type uip_ipaddr_t* 02038 */ 02039 #define uip_is_addr_link_local(a) \ 02040 ((((a)->u8[0]) == 0xFE) && \ 02041 (((a)->u8[1]) == 0x80)) 02042 02043 /** 02044 * \brief was addr (a) forged based on the mac address m 02045 * a type is uip_ipaddr_t 02046 * m type is uiplladdr_t 02047 */ 02048 #if UIP_CONF_LL_802154 02049 #define uip_is_addr_mac_addr_based(a, m) \ 02050 ((((a)->u8[8]) == (((m)->addr[0]) ^ 0x02)) && \ 02051 (((a)->u8[9]) == (m)->addr[1]) && \ 02052 (((a)->u8[10]) == (m)->addr[2]) && \ 02053 (((a)->u8[11]) == (m)->addr[3]) && \ 02054 (((a)->u8[12]) == (m)->addr[4]) && \ 02055 (((a)->u8[13]) == (m)->addr[5]) && \ 02056 (((a)->u8[14]) == (m)->addr[6]) && \ 02057 (((a)->u8[15]) == (m)->addr[7])) 02058 #else 02059 02060 #define uip_is_addr_mac_addr_based(a, m) \ 02061 ((((a)->u8[8]) == (((m)->addr[0]) | 0x02)) && \ 02062 (((a)->u8[9]) == (m)->addr[1]) && \ 02063 (((a)->u8[10]) == (m)->addr[2]) && \ 02064 (((a)->u8[11]) == 0xff) && \ 02065 (((a)->u8[12]) == 0xfe) && \ 02066 (((a)->u8[13]) == (m)->addr[3]) && \ 02067 (((a)->u8[14]) == (m)->addr[4]) && \ 02068 (((a)->u8[15]) == (m)->addr[5])) 02069 02070 #endif /*UIP_CONF_LL_802154*/ 02071 02072 /** 02073 * \brief is address a multicast address, see RFC 3513 02074 * a is of type uip_ipaddr_t* 02075 * */ 02076 #define uip_is_addr_mcast(a) \ 02077 (((a)->u8[0]) == 0xFF) 02078 02079 /** 02080 * \brief is group-id of multicast address a 02081 * the all nodes group-id 02082 */ 02083 #define uip_is_mcast_group_id_all_nodes(a) \ 02084 ((((a)->u16[1]) == 0) && \ 02085 (((a)->u16[2]) == 0) && \ 02086 (((a)->u16[3]) == 0) && \ 02087 (((a)->u16[4]) == 0) && \ 02088 (((a)->u16[5]) == 0) && \ 02089 (((a)->u16[6]) == 0) && \ 02090 (((a)->u8[14]) == 0) && \ 02091 (((a)->u8[15]) == 1)) 02092 02093 /** 02094 * \brief is group-id of multicast address a 02095 * the all routers group-id 02096 */ 02097 #define uip_is_mcast_group_id_all_routers(a) \ 02098 ((((a)->u16[1]) == 0) && \ 02099 (((a)->u16[2]) == 0) && \ 02100 (((a)->u16[3]) == 0) && \ 02101 (((a)->u16[4]) == 0) && \ 02102 (((a)->u16[5]) == 0) && \ 02103 (((a)->u16[6]) == 0) && \ 02104 (((a)->u8[14]) == 0) && \ 02105 (((a)->u8[15]) == 2)) 02106 02107 02108 /** 02109 * \brief are last three bytes of both addresses equal? 02110 * This is used to compare solicited node multicast addresses 02111 */ 02112 #define uip_are_solicited_bytes_equal(a, b) \ 02113 ((((a)->u8[13]) == ((b)->u8[13])) && \ 02114 (((a)->u8[14]) == ((b)->u8[14])) && \ 02115 (((a)->u8[15]) == ((b)->u8[15]))) 02116 02117 #endif /*UIP_CONF_IPV6*/ 02118 02119 /** 02120 * Calculate the Internet checksum over a buffer. 02121 * 02122 * The Internet checksum is the one's complement of the one's 02123 * complement sum of all 16-bit words in the buffer. 02124 * 02125 * See RFC1071. 02126 * 02127 * \param buf A pointer to the buffer over which the checksum is to be 02128 * computed. 02129 * 02130 * \param len The length of the buffer over which the checksum is to 02131 * be computed. 02132 * 02133 * \return The Internet checksum of the buffer. 02134 */ 02135 u16_t uip_chksum(u16_t *buf, u16_t len); 02136 02137 /** 02138 * Calculate the IP header checksum of the packet header in uip_buf. 02139 * 02140 * The IP header checksum is the Internet checksum of the 20 bytes of 02141 * the IP header. 02142 * 02143 * \return The IP header checksum of the IP header in the uip_buf 02144 * buffer. 02145 */ 02146 u16_t uip_ipchksum(void); 02147 02148 /** 02149 * Calculate the TCP checksum of the packet in uip_buf and uip_appdata. 02150 * 02151 * The TCP checksum is the Internet checksum of data contents of the 02152 * TCP segment, and a pseudo-header as defined in RFC793. 02153 * 02154 * \return The TCP checksum of the TCP segment in uip_buf and pointed 02155 * to by uip_appdata. 02156 */ 02157 u16_t uip_tcpchksum(void); 02158 02159 /** 02160 * Calculate the UDP checksum of the packet in uip_buf and uip_appdata. 02161 * 02162 * The UDP checksum is the Internet checksum of data contents of the 02163 * UDP segment, and a pseudo-header as defined in RFC768. 02164 * 02165 * \return The UDP checksum of the UDP segment in uip_buf and pointed 02166 * to by uip_appdata. 02167 */ 02168 u16_t uip_udpchksum(void); 02169 02170 /** 02171 * Calculate the ICMP checksum of the packet in uip_buf. 02172 * 02173 * \return The ICMP checksum of the ICMP packet in uip_buf 02174 */ 02175 u16_t uip_icmp6chksum(void); 02176 02177 02178 #endif /* __UIP_H__ */ 02179 02180 02181 /** @} */